Aircraft Engineering Calculator — SI units
Enter aircraft geometry/flight conditions. Defaults provide a small commuter-type example (6,000 kg, 30 m² wing).
Inputs
Results
— Weight (N)
Wing loading: N/m²
Aspect ratio (AR):
Lift @ V: N
Equilibrium check (Lift - Weight): N
Stall speed Vs (Cl_max): (m/s) ≈ km/h ≈ kt
Reynolds number Re (based on chord):
Parasite drag D0 = 0.5·rho·V²·S·Cd0 : N
Induced drag Di = 0.5·rho·V²·S·k·Cl² : N
Total drag D = D0 + Di : N
Required thrust (≈ total drag) : N
Required power P = T·V : W ≈ kW
Breguet range R ≈ (V / c)·(L/D)·ln(Wi/Wf) : m ≈ km
Simple takeoff ground roll (approx): m
Formulas used
Weight W = m·g (g = 9.80665 m/s²) Lift L = 0.5·rho·V²·S·Cl Stall speed Vs = sqrt( (2·W) / (rho·S·Cl_max) ) Wing loading = W / S Aspect ratio AR = b² / S Reynolds Re = (rho·V·c) / mu (assumed mu = 1.7894e-5 Pa·s for air at 15°C) Parasite drag D0 = 0.5·rho·V²·S·Cd0 Induced drag Di = 0.5·rho·V²·S·k·Cl² Total drag D = D0 + Di Required thrust ~ D Power required P = D · V Breguet (jet) R = (V / c) * (L/D) * ln(Wi/Wf) where c is fuel consumption in 1/s (e.g. TSFC in 1/s) and Wi/Wf is initial/final weight ratio. Takeoff roll (very approximate): s ≈ (W/S) / (rho·g·(T/W - mu_r)) * factor (we use a simpler energy-based approximation in the script) -- This is an estimate for level ground, no slope, and no obstacles.